Abstract
Co-generation system using clean and compact PEFC which makes highly efficient power generation possible, promotes considerable energy savings at home since it provides both heat and electricity together. Therefore, its commercialization has been expected. The goal of 40000-hour-operation has been set as a practical target. In order to realize it, the durability of PEFC has been technologically prospected and the accelerated aging test protocol of PEFC has been developed within the frame of the consortium of PEFC makers, energy companies, academia and AIST. AIST has shown the rationality of the accelerated aging test protocol of PEFC through the experimental verification of hypothetical degradation mechanism. The application of the developed accelerated aging tests to actual fuel cells has made it possible to get a clear view of practical durability, and this has led to the commercialization of residential PEFC co-generation.