Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Low Cycle Fatigue Properties of Fe-28Mn-6Si-5Cr-0.5NbC Alloy
Nobuo NagashimaTakahiro SawaguchiKazuyuki Ogawa
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2016 Volume 102 Issue 9 Pages 517-524

Details
Abstract

In this study, we conducted a low-cycle fatigue testing in a Fe-28Mn-6Si-5Cr-0.5NbC (FMS) alloy and a SUS304 steel. The fatigue tests were made using a servo hydraulic fatigue testing machine of capacity 50 kN, at maximum total strain amplitudes (εta) of 2.0%, 1.4%, 0.9%, 0.6%. In the SUS304 steel, with decrease in applied strain amplitude, stress-strain hysteresis loop is reduced. On the other hand, the stress response of the FMS alloy is almost unchanged, irrespective of the applied strain amplitude. The rupture life of the FMS alloy is 4 times higher at εta=0.6%, and twice at εta=0.9% and at εta=1.4% than the SUS304 steel. In addition, the stress amplitude of the FMS alloy is 1.5 times higher at εta=0.9%, and twice at εta=0.6% than the SUS304 steel. The prolonged fatigue life of the FMS alloy is attributable to the reversible deformation associated with the transformation pseudo-elasticity that can reduce the accumulated strain.

Content from these authors
© 2016 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top