Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Mechanical Properties
Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel and the Rate-Determining Process
Yuji Sakiyama Tomohiko OmuraKazuki SugitaMasataka MizunoHideki ArakiYasuharu Shirai
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 107 Issue 11 Pages 986-995

Details
Abstract

The effect of strain rate on hydrogen embrittlement susceptibility of high strength tempered martensitic steel was investigated by tensile tests under cathodic hydrogen charge. Fracture elongation was decreased with a decrease in strain rate and increase in diffusible hydrogen concentration. The mechanism of hydrogen embrittlement susceptibility was investigated based on vacancy-type lattice defects formation by positron lifetime spectroscopy. The clear correlation was not comfirmed between strain rate and the parameters of average positron lifetime, dislocation density and vacancy density. These parameters decreased with a decrease in fracture elongation, it means that these parameters did not reflect hydrogen embrittlement susceptibility. On the other hand, vacancy clustering was promoted with a decrease in strain rate. Therefore, it is assumed that strain rate dependence of hydrogen embrittlement susceptibility is determined by vacancy clustering process.

Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article
feedback
Top