Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Effect of Molybdenum Contents on Hardenability and Precipitation Behaviors in B-added Steels Austenitized at High Temperature
Kyohei Ishikawa Masaaki FujiokaManabu HoshinoJun TakahashiRyuichi HommaKohsaku Ushioda
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 109 Issue 1 Pages 62-75

Details
Abstract

The effect of molybdenum (Mo) contents on hardenability and precipitation behaviors in Mo-B simultaneously added steels were investigated placing a focus on high austenitizing temperature. The hardenability of 0.5% Mo - 11 ppm B steel austenitized at 1150°C was decreased compared with that austenitized at 950 °C, whereas 1.0% Mo - 10 ppm B and 1.5% Mo - 9 ppm B steels were less affected by high austenitizing temperature than 0.5% Mo - 11 ppm B steel. The Fe23(C, B)6 precipitation by increasing austenitizing temperature was also revealed to be suppressed in 1.5% Mo – 9 ppm B steel. These results indicate that the improved effect of the Mo addition on hardenability by retarding the precipitation of Fe23(C, B)6 still appear in B-added steels austenitized at high temperature. Furthermore, Fe23(C, B)6 precipitation start temperature was increased in Mo-B added steels austenitized at 1150 °C. This result implies that non-equilibrium B segregation mechanism during cooling from high austenitizing temperature enhances the amount of segregated B on grain boundaries leading to the promotion of the borides precipitation at high temperature austenitizing region. However, Mo is presumed to fix a part of thermal vacancies as Mo-V complex resulting in the suppression of non-equilibrium B segregation to grain boundaries during cooling, which is speculated to inhibit the Fe23(C, B)6 precipitation. Thus, the effect of Mo-B combined addition on hardenability was presumably maintained even in high austenitizing temperature region.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top