Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Origin of Serrated Markings on the Hydrogen Related Quasi-cleavage Fracture in Low-carbon Steel with Ferrite Microstructure
Kazuho Okada Akinobu ShibataHisashi MatsumiyaNobuhiro Tsuji
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 110 Issue 11 Pages 890-898

Details
Abstract

A typical hydrogen-related transgranular fracture, namely quasi-cleavage fracture, is usually accompanied by serrated markings on the resultant fracture surfaces in steels with body-centered cubic phases. The present paper investigated the microscopic three-dimensional morphology and crystallographic feature of serrated markings in a 2Mn-0.1C steel mainly composed of ferrite microstructure. The serrated markings corresponded to the corners of the step-like morphologies which consisted of microscopic {011} facets whose longitudinal directions were almost parallel to <011> or <211> direction. In addition, the microscopic {011} quasi-cleavage facets had the largest inclination angle from tensile axis among six crystallographically equivalent {011} planes, suggesting that resolved normal stress imposed on the {011} plane is an impor-tant factor for the hydrogen-related quasi-cleavage fracture. We propose that not only the slip deformation enhanced by hydrogen but also the coalescence of vacancies/voids induced by hydrogen-enhanced plastic deformation should be considered for understanding the mechanism of the hydrogen-related quasi-cleavage fracture along the {011} planes.

Fullsize Image
Content from these authors
© 2024 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
Previous article
feedback
Top