Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Impact of Particle Size and Bulk Density of Coal on Coking Behavior
Sara ArakawaYusuke Dohi Takashi MatsuiTetsuya Yamamoto
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2025 Volume 111 Issue 9 Pages 449-457

Details
Abstract

In the point of view of reducing coke production cost and future resource depletion, it is necessary to produce high-strength coke from low-rank coal.

It is reported that high strength coke can be obtained by pulverizing, compacting, and carbonizing low-rank coal, non-or-slightly-caking coal. In this study, we research the effects of coal size and coal charging density on coke strength and coke density, and discuss the mechanism for the change of coke properties. Coal of 1.0 mm or less to 0.1 mm or less was compacted to 0.8 g/cm3 to 1.1 g/cm3, carbonized at 900°C, and coke strength and coke density were measured.

As a result, it was found that coke strength significantly increased by pulverizing to 0.1 mm or less and increasing the coal charging density. The effects of coal particle size and coal charging density on coke properties are examined. When the grain size of coal becomes finer, swelling is suppressed, and large pores and connecting pores of coke are reduced. As the coal charging density increased, the coke density increased due to the shortening of the distance between coal particles.

Fullsize Image
Content from these authors
© 2025 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top