Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Application of Laser Ablation–Laser Induced Fluorescence Spectroscopy to Analysis of Steel
—Detection of Low Carbon in Steel—
Hiroyuki KondoNaoya Hamada
Author information
JOURNAL OPEN ACCESS

2008 Volume 94 Issue 5 Pages 155-159

Details
Abstract

Fluorescence of atomic carbon in steel was detected at 193.09 nm by the excitation with laser pulse tuned at 247.85 nm. Solid steel samples were irradiated by pulsed Nd:YAG laser (ablation laser) to generate atomic vapor, which was then illuminated by the probe laser. One of ionic iron lines is very close to the excitation line for carbon. However, its interaction was not found to be very significant because population of ionic iron decreased faster than that of atomic carbon in a transient plasma induced by the ablation laser. When the probe laser was coaxial with the ablation laser, fluorescence spectra with high selectivity was observed with delay of 50 μs between two lasers. Fluorescence intensities were in a good linear correlation with contents of carbon in steel samples in a range of 83–5000 μg/g, which suggested that quantitative detection of carbon would be possible with the developed method.

Content from these authors
© 2008 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Next article
feedback
Top