Abstract
Numerical simulation of roller leveling of thick plate was conducted using a dynamic explicit finite element code DYNA3D. The straightening process of a thick plate whose tip portion was initially bent was first calculated to check the applicability of the numerical simulation. The number of rolls was reduced from that used in practice. The effective intermesh setting of the rolls was found. The influence of the feeding speed of the plate was also checked to examine the effect of speed-scaling technique for the improvement of computational efficiency when the dynamic explicit finite element code was used. The shape defect of undulation at the tip portion of the plate was numerically predicted when the flat plate passed through the leveler. The amplitude in undulation was found smaller for the thicker plate by comparing the calculated surface profile with the circular arc of steady-state deformed shape. The thicker plate caused a local thinning phenomenon due to the severe bending deformation. The shape defect of undulation at the end potion of the plate after leveling process was also numerically predicted. The end portion of the plate showed a sigmoidal or V-bent pattern in accordance with the intermesh setting. The length of defect part was shortened by decreasing the diameter and pitch of the final two rolls.