Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Prediction of Nonmetallic Inclusion Formation in Fe–40mass%Ni–5mass%Cr Alloy Production Process
Naoya SatohToru TaniguchiSetsuo MishimaTeruyasu OkaTakahiro MikiMitsutaka Hino
Author information
JOURNAL OPEN ACCESS

2009 Volume 95 Issue 12 Pages 827-836

Details
Abstract

Thermodynamic consideration is an effective procedure for calculation of inclusion composition prediction. In general, Henrian standard state is used, and the activity coefficients of the constituents are represented by Wagner's formalism in thermodynamic calculations. This formalism is commonly used in low alloy steel, and this is not recommended for high alloy steel. High alloy steel is detailed thermodynamically using the Raoultian standard state, and the activity coefficients of the constituents are converted by Miki and Hino's formalism in this study. The equilibrium relation between Al2O3, MgO, spinel (MgO·Al2O3) and dissolved Al, Mg and O in Fe–40mass%Ni–5mass%Cr alloy (Spacer Frame for fluorescent display) were discussed. Plant data of Fe–40mass%Ni–5mass%Cr alloy were compared thermodynamically with the calculated results. It was found that Wagner's formalism can't be useful for inclusion composition prediction of Fe–40mass%Ni–5mass%Cr alloy, Miki and Hino's formalism should be utilized for high alloy steel.

Content from these authors
© 2009 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top