Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Review
Recent Developments in Modeling Microstructural Evolution during Recrystallization
Yoshihiro Suwa
Author information
JOURNAL OPEN ACCESS

2011 Volume 97 Issue 4 Pages 173-186

Details
Abstract
In this study, recent developments regarding the modeling of microstructural evolution during recrystallization are reviewed, and this paper highlights a unified theory for continuous and discontinuous annealing phenomena by means of the subgrain growth mechanism. In Sec. 3.2, the mean field analysis based on the unified theory is reviewed. In the analysis, the possibility of abnormal subgrain and/or grain growth based on non-uniform grain boundary mobility and energy has been clearly shown. With the developments in the unified subgrain growth theory, a number of Monte Carlo, vertex, and phase-field simulations have been performed, in order to investigate the microstructural evolution during recrystallization by considering the local alignment of the subgrain structure. Then, in Sec. 3.3, the numerical simulation results based on the unified theory are outlined. Finally, in Chap. 4, the numerical simulation results of static recrystallization in two-dimensional polycrystalline structures by coupling the unified sub-grain growth theory with the phase-field methodology are reviewed. In particular, the effects of the microstructural inhomogeneities formed during the deformation state on the recrystallization kinetics are discussed.
Content from these authors
© 2011 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top