Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
Effect of Strain Path Change and Strain Aging on Anisotropic Work-Hardening Behavior in Ferritic Steel
Kensuke NagaiYasuhiro ShinoharaEiji TsuruMayuko IshinoTetsuya Suzuki
Author information
JOURNAL OPEN ACCESS

2012 Volume 98 Issue 6 Pages 267-274

Details
Abstract

It has been well known that anisotropy in yield stress and the work-hardening rate is induced by pre-strain and aging. However, such an origin has not been adequately understood. In the present study, stress-strain curves in different directions were investigated after 2% pre-straining and post-heat treatment at 150°C in ferritic steel. When the applied strain path was changed to the orthogonal direction of the pre-straining path, the re-yield stress was lowered and the work-hardening rate in the low plastic strain was increased. The heat treatment following 2% pre-straining caused an increase of the re-yield stress in the parallel direction to the pre-strain and caused no change on the re-yield stress in the orthogonal direction. The work-hardening rate was increased in both directions after the heating. Electron back scatter diffraction pattern (EBSP) analysis was also conducted to measure the kernel average misorientation (KAM) value, which corresponded to the density of the geometrically necessary dislocation, on each [hkl]-oriented family grain for the pre-strained and the post-heated materials. The EBSP results indicated that heterogeneous work-hardening behavior among the [hkl]-oriented family grains could strongly effect the anisotropy induced by strain path change and aging.

Content from these authors
© 2012 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top