Abstract
A centrifugal casting method is an important process for high quality steel production because rolls produced by this method have been used in a rolling process in steel industry. However, some problems to be solved such as segregation still remain. Thus optimization of the centrifugal casting method is essential for high quality steel production. In this investigation, numerical calculation of fluid motion in the horizontal type centrifugal casting method has been conducted for clarification of effect of the rotation velocity of the mold on the fluid motion. And the following results have been obtained. Center of the gravity of a liquid phase shifts to upward from the center axis of the mold rotation and it increases with decrease of the mold rotation velocity. And frequency of the periodical motion of the center of the gravity can be explained by superposition of the mold rotation and wave propagation on the liquid free surface. Furthermore, the critical diameter for breaking dendrite growing from the mold increases with increase of the mold rotation velocity when the dendrite length is constant.