Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

This article has now been updated. Please use the final version.

Cold Spot Joining of Galvannealed DP 780 MPa Steel Sheets
Takumi AibaraYoshiaki MorisadaKohsaku UshiodaMasayoshi KamaiTakaaki MiyauchiShinichi HasegawaHidetoshi Fujii
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: TETSU-2023-113

Details
Abstract

The microstructural evolution and tensile properties of joints fabricated by the newly developed cold spot joining (CSJ) method were investigated using galvannealed DP 780 MPa steel sheet. The novel solid-state joining method called CSJ is proved to make the joining interface plastically deformed under high pressure and appropriate current by expelling Zn-Fe coated layer, resulting in the sound joints with strong interface. Joints exploiting CSJ method were made focusing on the effects of the pressing speed and current level. Microstructural observations of the joints revealed that the lower pressing speed increases the interface temperature. In addition, the increase in the current also increases the interface temperature. The increase in the interface temperature has a positive effect in terms of expelling Zn-Fe coated layer. The positive effect of increasing current is more significant than that of decreasing the pressing speed. The increase in temperature near the interface by increasing current promotes the removal of the Zn-Fe coating layer, resulting in plastic deformation near the joining interface. Appropriate pressure and current settings can facilitate the sound spot joints with enough tensile strength. Both tensile-shear and cross-tension tests have confirmed a plug failure in the base material region.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
feedback
Top