Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

This article has now been updated. Please use the final version.

Role of Si Addition in Interfacial Reactions of Steel Sheets Hot-dipped in Zn-55%Al Alloy Melt
Yasuo OmiDasom KIMNaoki Takata Asuka SuzukiMakoto KobashiSuzue Yoneda
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: TETSU-2024-097

Details
Abstract

This study was set to fundamentally understand the effect of Si addition on the interfacial reaction between Zn-55%Al alloy liquid (corresponding to a nominal composition of Al-25Zn (at%)) and Fe solid in the production process of GALVALUME steel sheets. The pure Fe sheets were hot-dipped in Al-25Zn and Al-25Zn-2Si (at%) alloy melts at 600, 650, and 700oC for 2~3600 s. Significantly thick coatings were formed on Fe sheets hot-dipped in the Al-25Zn binary alloy melt for a longer time than 10 s. The coating thickness became several millimeters after 30 s, resulting in a delamination of the coating. The significant Fe dissolution occurred in the Al-Zn binary alloy melt, accompanied by a significant growth of η phase (Fe2Al5) toward the solid Fe. The growth could be promoted by the Zn-rich liquid phase with a lower melting temperature. However, in the case of hot-dipping in the Al-25Zn-2Si ternary alloy melt, uniform coatings were formed on the hot-dipped Fe sheets due to the suppressed interfacial reactions. The Fe dissolution slightly occurred, and a continuous layer of Si-rich T5 (Fe2Al7.4Si) phase was formed at the interface of solid Fe with the Al-25Zn-2Si alloy melt. The continuous T5 phase layer would play a role in a diffusion barrier at the interface of solid Fe with liquid Al-Zn alloy, resulting in the suppressed interfacial reaction. These interfacial reaction processes are discussed based on thermodynamic calculations of the Fe-Al-Zn ternary and Fe-Al-Zn-Si quaternary systems.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top