Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

This article has now been updated. Please use the final version.

Phase-field Simulation of the Stability of Fe2Al5 Phase at Fe/molten Zn–Al interface
Shunsuke ShiotaniYuhki Tsukada Toshiyuki Koyama
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: TETSU-2024-110

Details
Abstract

The stability of η-Fe2Al5 phase at α-Fe/molten Zn–0.1Al (wt.%) (L) interface at 723 K in Fe–Zn–Al ternary system was investigated by phase-field simulations. Thin layers of intermetallic compound (IMC) phases (η,Г-Fe3Zn10,Г1-Fe5Zn21 and δ1-FeZn7) were placed between the α and L phases, and the growth of the IMC layers and the atomic diffusion of constituent elements along the direction perpendicular to the α/L interface were calculated by one-dimensional phase-field simulation. The simulation result showed that Г and Г1 phases dissolved, and thin η phase and thick δ1 phase remained stable at the α/L interface. Moreover, several phase-field simulations were performed by varying the values of interdiffusion coefficients in each phase. The simulation results showed that the diffusion and partitioning behaviors of Al have a significant effect on the stability of IMC layers at the α/L interface. It was found that the partitioning of Al to the α phase was suppressed due to the fact that the value of interdiffusion coefficient in the α phase was several orders of magnitude smaller than those in the IMC phases. The resultant Al partitioning to the IMC phases was the direct cause of the stabilization of the η phase and the destabilization of the Г and Г1 phases.

Content from these authors
© 2024 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top