Abstract
The thermal stresses in the ingot moulds were determined based on thermo-elasticity with a aid of digital computor. The unsteady temperature distribution was first established on the nodal points of mesh screens representing the cross section of the moulds. The the rmal stresses, strains and displacements were then calculated by the finite element method, where the imaginary division of the mould as an elastic continuum into a finite number of elements is a common procedure and each of them satisfies the compatibility and eyquilibrium conditions.
Because of various factors affecting the mould life, one should refrain from making a quick decision on the basis of stress analysis only, but this method of calculation is useful and promising though concrete results is incomplete without the direct measurements of stresses at present stage. The magnitude of stresses Were found to be big enough for crazing and initial cracking of mould. Comparisons of stresses were made with respect to varying wall thickness and their size.