Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Some Turbulent Fluid Flow Problems in Steel Processing Operations
Julian SZEKELYShigeo ASAI
Author information
JOURNAL OPEN ACCESS

1975 Volume 61 Issue 8 Pages 2012-2027

Details
Abstract
Through the use of turbulent flow theory a mathematical representation is proposed for a range ofsteel processing operations where turbulent mixing plays a major role in determining the efficiency ofthe process. The resultant differential equations were solved numerically, using a digital computer.
The examples discussed in the paper include mixing in argon-stirred ladles, the flow patterns in theliquid pool of continuous casting systems, the flow field induced by an electromagnetic force field incontinuous casting and flow patterns in rimming ingots.
The computed results indicate that velocities as high as 30 cm/s may be found in these systems andthat the eddy diffusivities may have values as high as 500 cm2/s. The computed results were found tobe in reasonable semi-quantitative and in some cases quantitative agreements with results of experimentalmodel tests. While the computer requirements are quite substantial, some 5-10 minutes on a CDC6 400 (state university of New York at Buffalo), the approach outline here seems attractivebecause it provides a much improved insight into the structure of the flow field and a more solid basisfor further studies of inclusion coalescence, inclusion entrapment, electromagnetic stirring, and mass transfer in steel processing.
Content from these authors
© The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top