Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Corrosion Fatigue Crack Growth Characteristics of a 50 kgf/mm2 TMCP Steel in Synthetic Sea Water
Kenjiro KOMAIHideki OKAMOTO
Author information
JOURNAL OPEN ACCESS

1988 Volume 74 Issue 2 Pages 358-364

Details
Abstract
The corrosion fatigue (CF) crack growth rate of a 50 kgf/mm2 TMCP steel has been measured in ASTM synthetic sea water. The CF crack growth rate in synthetic sea water both at free corrosion and under a cathodic potential is smaller than that in air under a low ΔK level at R=0.1. The crack growth under a cathodic potential is proceeded by fatigue mechanism at a low ΔK level, while at a high ΔK level it is accelerated by hydrogen embrittlment. The CF crack growth characteristics under a cathodic potential can not be explained in terms of ΔKeff, since Ca and Mg deposits-induced wedge effect enlarges region II in load-strain hysteresis loops. A modified stress intensity factor range, ΔKcont, deduced from the load range shared by regions I and II is useful to explain the influence of cathodic potential on crack growth rate. When severe corrosive dissolution occurs at free corrosion potential, the crack growth characteristics can be uniquely explained in terms of effective crack growth rate considering the crack closure (da/dt)eff and ΔKcont.
Content from these authors
© The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top