Abstract
By the measurements of radiation temperature of the hot spot of oxygen jet and by the calculation of the radiation coefficient in the field of vision of single-hole oxygen nozzle, definition of the "luminous radiation temperature" is made as the temperature of the hot spot of oxygen jet ejected onto the molten steel bath surface in BOF process. The luminous radiation temperature thus obtained is ranged from 2 000 to 2 600°C. Evaporation phenomena of iron at the hot spot are calculated following to the HERZ-KNUDSEN-LANGMUIR'S equation, and values of evaporation rate constant of iron, KOFe, is obtained. Evaporation of manganese is controlled by the rate of diffusion in the bath, and the asymptote by R. G. WARD is introduced to calculate the values of KMn under an assumption of KOFe=KMn at the boiling point of iron.
The difference on the evaporation phenomena of iron researched as the "Counter-Flux-Transfer" theory and those at the hot spot of oxygen jet of BOF process are made clear. Effects of oxygen dissolved in iron on surface activation and relation between fume formation and decarburization reaction are discussed.