Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Effects of Alloying Elements, Microstructure and Applied Stress on Amount of Saturated Temper Embrittlement and Embrittling Rate in Low Alloy Steels
Masaaki KATSUMATA
Author information
JOURNAL OPEN ACCESS

1993 Volume 79 Issue 4 Pages 517-523

Details
Abstract
Effects of alloying elements, microstructure and applied stress on temper embrittlement were studied at standpoints of the saturated amount and the rate of embrittlement in low pressure turbine rotor steels. The saturated amount of temper embrittlement was increased by Si or Mn content. It was affected by microstructure, but was not affected by hardness after tempering and applied stress. The saturated amount of temper embrittlement was the largest in a sample with martensite. The next was in a sample with bainite and the smallest in a sample with pearlite. The rate of temper embrittlement was enhanced by an increase in Mn content or hardness or by tensile stress. It was prevented by hydrostatic compression. Si and microstructure did not influence the rate of temper embrittlement. The amount of temper embrittlement increased with the amount of phosphorus segregated to grain boundary in samples with a certain microstructure. The amount of embrittlement was larger in samples with high hardness than in samples with low hardness at a certain amount of phosphorus segregated.
Content from these authors
© The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top