Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
State-Equation of a 2.25Cr-1Mo Steel under Constant Load Creep Testing
Jianzhong SHITakao ENDO
Author information
JOURNAL OPEN ACCESS

1994 Volume 80 Issue 10 Pages 795-800

Details
Abstract
Creep testing was conducted on the pre-crept specimens of a 2.25Cr-1Mo steel under constant load. The amount of pre-strain was between 4.4 and 12.0%, and the range of temperature and initial stress was 853 to 903 K and 78.4 to 127.4 MPa, respectively. The relation between creep rate, ε and creep strain, ε was expressed as below over a wide range of creep strain :
ε=εOexp(sε),
where s is the acceleration factor, ε0 is the imaginary initial strain rate, and the stress and temperature dependence ofεO is given as:
ε0=Aσnexp(-QO/RT),
where QO is the apparent activation energy for creep of the magnitude of 400±10kJ·mol-1, σ is the true stress, n is the stress exponent of the magnitude of 9.7 and A is the mechanically defined structure factor expressed as below:
A=AOexp[(m-n)εp],
where AO is the structure factor for virgin specimens and m is the constant. These experimental facts lead to the conclusion that pre-strain and creep strain do not alter the creep mechanism but cause the increase in the mechanically defined structure factor, and creep life, tr is given by tr=1/ (sεO).
Content from these authors
© The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top