Abstract
The impact properties of high-strength low alloy TRIP steels such as "TRIP-aided dual-phase steel" and "TRIP-aided bainitic steel" associated with the transformation-induced plasticity (TRIP) of retained austenite were investigated for some applications to the automotive impact members. The TRIP steels possessed far higher impact absorbed value and lower ductile-brittle transition temperature than the conventional ferrite-martensite and ferrite-pearlite steels. The stress relaxation resulting from the strain-induced transformation of retained austenite islands or films improved the impact properties in terms of suppressing void and/or crack initiation and these propagation. The best impact properties were completed in the steel composing of uniform fine bainitic lath structure and a large amount of stable interlath retained austenite films.