Abstract
The Equal Channel Angular Extrusion (ECAE) was successfully used as an intense straining process to obtain ultra-fine grained metals. However, it has a problem in applicability to long, thin coiled strips. The authors proposed an alternative continuous shear deformation process, i.e., Conshearing. In this study, 1 mm thick ultra low carbon interstitial-free (IF) steel strip is subjected to the conshearing process at room temperature up to four passes. The deformation characteristics, the changes in microstructure, texture and mechanical properties have been investigated. The shear strain is introduced uniformly through the thickness except around surfaces, and increases with the number of passes. The tensile strength increases from 282 to 442 MPa by four passes. The processed materials shows relatively higher elongation (26%), even after 4 passes. The shear texture with {110} <001> and {112}<111> components is formed in the sheared region.