Abstract
A dynamic model of a vapor compression refrigeration cycle composed of a compressor with a high-pressure chamber, cross finned heat exchangers, an expansion valve and pipes is developed. In order to prove the effectiveness of the model, start-up simulation results are compared with experimental result obtained for a prototype refrigeration cycle. In these experiments, the refrigerant mass distribution in the refrigeration cycle is set and two start-up operations are performed. One operation is called "hot-start", which means starting-up from a high temperature in the compressor chamber. The other is called "cold-start", which means starting-up from a low temperature. The simulation results well support the experimental results for both operations and prove the effectiveness of the developed model.