Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers
Online ISSN : 2185-789X
Print ISSN : 1344-4905
ISSN-L : 1344-4905
Papers
Optimal Environmental Performance of Water-cooled Chiller System with All Variable Speed Configurations
Fu Wing YUKwok Tai CHAN
Author information
JOURNAL FREE ACCESS

2010 Volume 27 Issue 4 Pages 339-346

Details
Abstract
This study investigates how the environmental performance of water-cooled chiller systems can be optimized by applying load-based speed control to all the system components. New chiller and cooling tower models were developed using a transient systems simulation program called TRNSYS 15 in order to assess the electricity and water consumption of a chiller plant operating for a building cooling load profile. The chiller model was calibrated using manufacturer's performance data and used to analyze the coefficient of performance when the design and control of chiller components are changed. The NTU-effectiveness approach was used for the cooling tower model to consider the heat transfer effectiveness at various air-to-water flow ratios and to identify the makeup water rate. Applying load-based speed control to the cooling tower fans and pumps could save an annual plant operating cost by around 15% relative to an equivalent system with constant speed configurations.
Content from these authors
© 2010 Japan Society of Refrigerating and Air Conditioning Engineers
Previous article Next article
feedback
Top