Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS
STEPHEN G. SIMPSON
Author information
JOURNAL FREE ACCESS

2011 Volume 63 Issue 4 Pages 489-517

Details
Abstract
The study of mass problems and Muchnik degrees was originally motivated by Kolmogorov's non-rigorous 1932 interpretation of intuitionism as a calculus of problems. The purpose of this paper is to summarize recent investigations into the lattice of Muchnik degrees of nonempty effectively closed sets in Euclidean space. Let $\mathcal{E}_\mathrm{w}$ be this lattice. We show that $\mathcal{E}_\mathrm{w}$ provides an elegant and useful framework for the classification of certain foundationally interesting problems which are algorithmically unsolvable. We exhibit some specific degrees in $\mathcal{E}_\mathrm{w}$ which are associated with such problems. In addition, we present some structural results concerning the lattice $\mathcal{E}_\mathrm{w}$. One of these results answers a question which arises naturally from the Kolmogorov interpretation. Finally, we show how $\mathcal{E}_\mathrm{w}$ can be applied in symbolic dynamics, toward the classification of tiling problems and $\boldsymbol{Z}^d$-subshifts of finite type.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2011 by THE TOHOKU UNIVERSITY
Previous article Next article
feedback
Top