Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON THE FOURIER COEFFICIENTS OF JACOBI FORMS OF INDEX $N$ OVER TOTALLY REAL NUMBER FIELDS
HISASHI KOJIMA
Author information
JOURNAL FREE ACCESS

2012 Volume 64 Issue 3 Pages 361-385

Details
Abstract
Skoruppa and Zagier established a bijective correspondence from the space of Jacobi forms $\phi$ of index $m$ to that of elliptic modular forms $f$ of level $m$. Gross, Kohnen and Zagier formulated this correspondence by means of kernel functions. Moreover, they proved that the squares of Fourier coefficients of $\phi$ are essentially equal to the critical values of the zeta functions $L(s,f,\chi)$ of $f$ twisted by a quadratic character $\chi$.
The purpose of this paper is to prove a generalization of such results concerning liftings and Fourier coefficients of Jacobi forms to the case of Jacobi forms of index $N$ over totally real number fields $F$. Using kernel functions associated with the space of quadratic forms, we shall establish the existence of a lifting from the space of Jacobi forms $\phi$ of index $N$ over $F$ to that of Hilbert modular forms $f$ of level $N$ over $F$. Moreover, we determine explicitly the Fourier coefficients of $f$ from those of $\phi$. We prove that an analogue of Waldspurger's theorem in the case of Jacobi forms of index $N$ over $F$ holds.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2012 by THE TOHOKU UNIVERSITY
Previous article Next article
feedback
Top