Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
GREEN'S FUNCTIONS OF RANDOM WALKS ON THE UPPER HALF PLANE
KÔHEI UCHIYAMA
Author information
JOURNAL FREE ACCESS

2014 Volume 66 Issue 2 Pages 289-307

Details
Abstract

We obtain an asymptotic estimate of the Green function of a random walk on $\boldsymbol{Z}^2$ having zero mean and killed when it exits from the upper half plane. A little more than the second moment condition is assumed. The estimate obtained is used to derive an exact asymptotic form of the hitting distribution of the lower half plane of the walk. The higher dimensional walks are dealt with in the same way.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 THE TOHOKU UNIVERSITY
Previous article
feedback
Top