Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION IN 2D CASE
Nakao HayashiPavel I. Naumkin
Author information
JOURNAL FREE ACCESS

2020 Volume 72 Issue 1 Pages 15-37

Details
Abstract

We consider the Cauchy problem for the higher-order nonlinear Schrödinger equation in two dimensional case

\[ \left\{\!\!\! \begin{array}{c} i\partial _{t}u+\frac{b}{2}\Delta u-\frac{1}{4}\Delta ^{2}u=\lambda \left\vert u\right\vert u,\text{ }t>0,\text{\ }x\in \mathbb{R}^{2}\,\mathbf{,} \\

u\left ( 0,x\right) =u_{0}\left ( x\right) ,\text{\ }x\in \mathbb{R}^{2} \,\mathbf{,} \end{array} \right. \]

where $\lambda \in \mathbb{R}$, $b>0$. We develop the factorization techniques for studying the large time asymptotics of solutions to the above Cauchy problem. We prove that the asymptotics has a modified character.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 THE TOHOKU UNIVERSITY
Previous article Next article
feedback
Top