Journal of Toxicologic Pathology
Online ISSN : 1881-915X
Print ISSN : 0914-9198
ISSN-L : 0914-9198
Original Article
Gene expression analysis of antioxidant and DNA methylation on the rat liver after 4-week wood preservative chromated copper arsenate exposure
Naofumi TakahashiSatoru YamaguchiRyouichi OhtsukaMakio TakedaToshinori YoshidaTadashi KosakaTakanori Harada
Author information

2023 Volume 36 Issue 1 Pages 31-43


Our previous 4-week repeated dose toxicity study showed that wood preservative chromated copper arsenate (CCA) induced hepatocellular hypertrophy accompanied by biochemical hepatic dysfunction and an increase in oxidative stress marker, 8-hydroxydeoxyguanosine, in female rats. To further explore the molecular mechanisms of CCA hepatotoxicity, we analyzed 10%-buffered formalin-fixed liver samples from female rats for cell proliferation, apoptosis, and protein glutathionylation and conducted microarray analysis on frozen liver samples from female rats treated with 0 or 80 mg/kg/day of CCA. Chemical analysis revealed that dimethylated arsenical was the major metabolite in liver tissues of male and female rats. CCA increase labeling indices of proliferating cell nuclear antigen and decrease terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling accompanied with increased expression of protein glutathionylation, indicating a decrease in glutathione (GSH) in hepatocytes of female rats. Microarray analysis revealed that CCA altered gene expression of antioxidants, glutathione-S-transferase (GST), heat shock proteins and ubiquitin-proteasome pathway, cell proliferation, apoptosis, DNA methylation, cytochrome P450, and glucose and lipid metabolism in female rats. Increased expression of GSTs, including Gsta2, Gsta3, Mgst1, and Cdkn1b (p27), and decreased expression of the antioxidant Mt1, and DNA methylation Dnmt1, Dnmt3a, and Ctcf were confirmed in the liver of female rats in a dose-dependent manner. Methylation status of the promoter region of the Mt1 was not evidently changed between control and treatment groups. The results suggested that CCA decreased GSH and altered the expression of several genes, including antioxidants, GST, and DNA methylation, followed by impaired cell proliferation in the liver of female rats.

Content from these authors
© 2023 The Japanese Society of Toxicologic Pathology
Previous article Next article