Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
Effect of HFO Refrigerants on Lubrication Characteristics (Part 2)
―Adsorption Characteristics of Various Refrigerants on Nascent Iron Surface and Molecular Simulation Analysis―
Yuji ShitaraTasuku OnoderaShigeyuki Mori
Author information
JOURNAL OPEN ACCESS

2023 Volume 18 Issue 7 Pages 524-533

Details
Abstract

Following the previous paper focusing on tribological properties of hydrofluoroolefin (HFO) refrigerant, the adsorption behavior of refrigerants on the nascent iron surface was investigated experimentally and the adsorption structure, adsorption energy and dynamic process of chemical reaction of refrigerants were analyzed by a molecular simulation. The adsorption behavior on the nascent iron surface was highly dependent on the molecular structure of the refrigerant. HFO refrigerants with an unsaturated bond exhibited high adsorption activity, and halogen species also affected the adsorption activity. HFO showed higher adsorption activity than organic ester, phosphate ester and alkyl sulfide as model compounds of refrigerator oil. In adsorption simulation by neural network potential (NNP), HFO molecules showed large negative adsorption energy. The mechanism for this stronger adsorption of HFO species, density functional theory calculation was conducted, and it showed that HFO adsorbs on iron surface by electron donation from the molecule and back-donation from iron surface. There was also a good correlation between the experimental adsorption activity and the NNP-obtained adsorption energy. MD simulation of molecule adsorbed on the nascent surface at temperature of 298 K was subsequently done using the iron fluoride has been experimentally detected on friction track by using XPS in the first report of this study. It was concluded that the adsorption and tribochemical formation of iron fluoride from HFO are supported by molecular simulation performed in this study.

Content from these authors
© 2023 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top