Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
High Pressure Rheology of Lubricants (Part 2)
―Deriving Equation of Relations of Pressure, Temperature and the Density―
Masato Kaneko
Author information
JOURNAL OPEN ACCESS

2024 Volume 19 Issue 1 Pages 33-41

Details
Abstract

In elastohydrodynamic lubrication (EHL) theory published in 1962, Dowson et al. derived a density pressure relational equation. Therefore, it seemed that this equation could be utilized as an estimation equation of the density term of the viscosity pressuretemperature-density linear equation of Part 1 of the paper. However, since the temperature function is not included in the equation, the calculated value at 40°C is in good agreement with the measured value, but in the high temperature range, the calculated value found large deviation from the measured value. Therefore, introduction of temperature function into the equation was studied, and density-pressure-temperature relational equation was newly derived. In this result, it became possible to estimate the high pressure density at each temperature, and it became possible to utilize as the estimation equation of the density term of the 1st report. And it was found that the linear equation can also be applied to the ASME report data up to around 1 GPa. Incidentally, the slope a of the linear equation is a characteristic constant of the lubricant related to the high pressure density and the 1 + 1/b value obtained from the intercept b indicates the maximum density ratio.

Content from these authors
© 2024 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top