Journal of Biomechanical Science and Engineering
Online ISSN : 1880-9863
ISSN-L : 1880-9863
Advance online publication
Displaying 1-4 of 4 articles from this issue
  • Huu-Hieu QUANG, Yoshifumi MORITA, Noritaka SATO, Makoto TAKEKAWA
    Article ID: 21-00337
    Published: 2022
    Advance online publication: May 26, 2022

    Range of motion (ROM) is an essential index for assessing the effectiveness of therapeutics in clinical practice. Rehabilitation therapists commonly use a goniometer to manually measure the ROM of finger joints. However, the measurement could be time consuming and burdening for patients, particularly when multiple finger joints are required to be measured. The required measurement accuracies of general rehabilitation and hand therapy tests are less than 5° and 2°, respectively. Therefore, in this study, we developed an active ROM digital testing device to reduce the measurement time and ease the burden on both patients and rehabilitation therapists during the measurement. The proposed digital testing device comprises an Intel RealSense depth camera and a computer. Rehabilitation therapists point the camera toward the patient’s finger joints to capture the RGB and depth images. Similar to the measurement principle of the goniometer, the target joint angle can be computed by obtaining the three-dimensional coordinates of the point cloud on the centerline of the finger bones that form the joint and the center point of the joint. The effectiveness of the proposed device was verified by comparing the generated results with those obtained from the goniometer. In 91.7% of the trials conducted in this study, the error of the proposed digital testing device was found to be less than 2° with a mean measurement time of 4.9 s, which is 46.2% less that of the goniometer.

    Download PDF (8774K)
  • Masaru HIGA, Yudai ENDO, Yudai NAKAGAWA
    Article ID: 22-00060
    Published: 2022
    Advance online publication: April 09, 2022

    Although the role of biarticular muscles during squatting and its variations have received considerable attention, the function of these muscles during squatting is not well understood. Closed kinetic chain exercises like squats are commonly preferred for knee rehabilitation and strength training for athletes. Squat exercises require both the hip and knee extensors, such as the gluteus maximus, hamstrings, and quadriceps femoris. For the hip extension strategy, the gluteus maximus and hamstrings have an important role, while the hamstrings and quadriceps co-contract at the knee. The same co-contraction occurs at the hip, between the rectus femoris and the hip extensors. These co-contractions do not seem to be effective, in terms of minimum energy expenditure, minimum muscle fatigue, and minimum sense of effort. However, muscular co-contraction is often seen in human movement, and the co-contractions were measured using electromyography (EMG). Although muscle co-contraction is important to modulate joint stability, the co-contraction cannot be predicted in simulations using a musculoskeletal model where the sum of the muscle activations or metabolic energies is minimized. Thus, the activations of those biarticular muscles are clearly underestimated. In this study, EMG were measured during squatting, and interpretations to understand biarticular muscles activations are discussed.

    Download PDF (994K)
  • Tomohiro OTANI, Hiroshi YAMASHITA, Kazuma IWATA, Selin Yavuz ILIK, Shi ...
    Article ID: 22-00050
    Published: 2022
    Advance online publication: April 06, 2022

    Phase-contrast magnetic resonance imaging (PC-MRI) allows us to acquire biofluid flow velocity maps, whereas MRI data is restricted by spatiotemporal resolution limitations and contains theoretically inevitable errors. Although various approaches to estimating actual velocity from MR velocity maps using the mass and momentum conservation laws have been proposed, practically reasonable methodologies are still not well established. This study investigates a practical strategy for estimating physically consistent velocities from MR velocity maps based on variational optimal boundary control through examples of the 2D steady Stokes flow as an incompressible viscous fluid. We defined a minimization problem of the sum of squared residuals between MR and the estimated velocity at all pixels (voxels) considering the image data structure with respect to the Dirichlet boundary velocity condition subject to flow governing equations based on variational formulations. This optimization problem is treated as an unconstrained optimization problem by deriving the Lagrange functional, including the cost function, regularization term, and constraint conditions. The optimality condition is computed using the adjoint variable method in a finite element manner. The boundary velocity profile is iteratively updated by the optimality condition using gradient-based optimization until convergence. Numerical examples for 2D Poiseuille flow with noise-free and noisy reference data demonstrated good convergencies of the cost function minimization. The estimated flow velocities were in excellent agreement with reference data. Finally, we demonstrated the viability of the velocity estimation using the actual MR velocity of the cerebrospinal fluid flow. The proposed approach with further considerations specialized for the MRI may be feasible in providing physically consistent velocity profiles in a versatile target of the biofluid flow.

    Download PDF (988K)
  • Rui GONG, Kazunori HASE, Sentong WANG, Susumu OTA
    Article ID: 21-00319
    Published: 2022
    Advance online publication: February 23, 2022

    This study as primary research to propose a non-invasive technique to diagnose the Outerbridge grade of cartilage damage by impact signals. A knee model was experimented with the novel attempt instead of a real knee. The knee model is made by a 3D model converted from magnetic resonance images (MRI) and then assembled by true scale and position. The impact signal is input from the calf and output from the thigh, and the absorption of the impact signal is contended differently by different Outerbridge grades of cartilage. The absorbed impact signals collected by sensors were time-frequency analyzed by continuous Gabor transform (CGT). In addition, the absorbed jerk signal is interpreted by the singular spectrum analysis (SSA) for its oscillation components. The analysis of the signals in this study found that the features derived have abilities to distinguish Outerbridge classification. Therefore, the proposed method can be considered for carrying the experiment onto real knees. This study provides a novel idea to make the diagnostic technique of cartilage damage efficient. Combined with the feature engineering and classification technique, it will help in the clinical diagnosis of knees, this study expects that the method can be applied not only to the diagnosis of the overall knee, but also that the method can diagnose more tiny areas in the early stages of the knee disorder.

    Download PDF (1556K)