Journal of Reproduction and Development
Advance online publication
Advance online publication

This service provides final online versions of articles before they are compiled and published in an issue.

Showing 1-24 articles out of 24 articles from Advance online publication
    • |<
    • <
    • 1
    • >
    • >|
  • Maria Grazia PALMERINI, Manuel BELLI, Stefania Annarita NOTTOLA, Selen ...
    Article ID: 2017-143
    [Advance publication] Released: December 11, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Mancozeb, an ethylene bis-dithiocarbamate, is widely used as a fungicide and exerts reproductive toxicity in vivo and in vitro in mouse oocytes by altering spindle morphology and impairing the ability to fertilize. Mancozeb also induces a premalignant status in mouse granulosa cells (GCs) cultured in vitro, as indicated by decreased p53 expression and tenuous oxidative stress. However, the presence and extent of ultrastructural alterations induced by mancozeb on GCs in vitro have not yet been reported. Using an in vitro model of reproductive toxicity, comprising parietal GCs from mouse antral follicles cultured with increasing concentrations of mancozeb (0.001–1 µg/ml), we sought to ascertain the in vitro ultrastructural cell toxicity by means of transmission (TEM) and scanning (SEM) electron microscopy. The results showed a dose-dependent toxicity of mancozeb on mouse GCs. Ultrastructural data showed intercellular contact alterations, nuclear membrane irregularities, and chromatin marginalization at lower concentrations, and showed chromatin condensation, membrane blebbing, and cytoplasmic vacuolization at higher concentrations. Morphometric analysis evidenced a reduction of mitochondrial length in GCs exposed to mancozeb 0.01–1 µg/ml and a dose-dependent increase of vacuole dimension. In conclusion, mancozeb induced dose-dependent toxicity against GCs in vitro, including ultrastructural signs of cell degeneration compatible with apoptosis, likely due to the toxic breakdown product ethylenethiourea. These alterations may represent a major cause of reduced/delayed/missed oocyte maturation in cases of infertility associated with exposure to pesticides.

    View full abstract
    Download PDF (2147K)
  • Chika HIGUCHI, Natsumi SHIMIZU, Seung-Wook SHIN, Kohtaro MORITA, Kouhe ...
    Article ID: 2017-127
    [Advance publication] Released: December 07, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Maternal RNA/protein degradation and zygotic genome activation (ZGA), occurring during maternal-to-zygotic transition (MZT), are the first essential events for the development of pre-implantation embryos. Previously, we have shown the importance of the ubiquitin-proteasome system (UPS) for initiation of minor ZGA at the 1-cell stage of mouse embryos. However, little is known about the mechanism of involvement of the UPS-degraded maternal proteins in ZGA. In this study, we investigated the effect of inhibiting maternal protein degradation by the reversible proteasome inhibitor, MG132, on post-implantation development and ZGA regulation during early cleavage stages. Our study revealed that zygotic transcription by RNA polymerase II (Pol II) at the 1-cell stage was delayed and the full-term development was affected by transient proteasome inhibition during 1 to 9 hours post-insemination (hpi). Furthermore, we found that the transient inhibition of proteasome activity at the 2-cell stage delayed the onset of transcription of some major ZGA genes. These results support the model hypothesizing the requirement of sequential degradation of maternal proteins by UPS for the proper onset of ZGA and normal progression of MZT in early mouse embryos.

    View full abstract
    Download PDF (2190K)
  • Akane SATO, Borjigin SARENTONGLAGA, Kazuko OGATA, Mio YAMAGUCHI, Asuka ...
    Article ID: 2017-145
    [Advance publication] Released: December 07, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    The maturation rate of canine oocytes during in vitro maturation (IVM) needs to be improved. The present study was designed to evaluate the effects of insulin-like growth factor-1 (IGF-1) on the IVM of canine oocytes. Ovaries were obtained by ovariohysterectomy and were sliced to release cumulus-oocyte complexes (COCs). In Experiment 1, the effects of different concentrations of IGF-1 on the nuclear maturation of oocytes was investigated. The COCs were cultured in a modified medium (mTCM199) with IGF-1 (0, 0.5, 5, 10, and 50 µg/ml). At the end of the 48 h culture, oocytes were fixed and stained to evaluate their nuclear stage. Supplementation with 50 µg/ml IGF-1 induced a significantly higher metaphase II (MII) rate (P < 0.05) compared to the 0 and 0.5 μg/ml IGF-1 groups. In Experiment 2, the expression levels of insulin receptor (INSR), IGF-1 receptor (IGF-1R), and IGF-2 receptor (IGF-2R) genes, localized to canine oocytes and cumulus cells, were investigated before and after IVM. The expression level of IGF-1R in cumulus cells after IVM was higher than that before IVM (P < 0.05). In Experiment 3, it was investigated whether an inhibitor of PTEN (phosphatase and tensin homolog), bpV, affects the nuclear maturation of oocytes. Regardless of bpV supplementation at a concentration of 0.2 to 200 µmol/l, there was no significant difference in the proportion of oocytes that reached the MII stage. These results indicated that IGF-1 has a favorable effect on the IVM of canine oocytes, possibly through the stimulation of the Ras/MAPK pathway via IGF-1R expressed in cumulus cells.

    View full abstract
    Download PDF (1609K)
  • Kohta KIKUCHI, Keisuke SASAKI, Hiroki AKIZAWA, Hayato TSUKAHARA, Hanak ...
    Article ID: 2017-124
    [Advance publication] Released: November 17, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses.

    View full abstract
    Download PDF (8498K)
  • Yuko TOISHI, Nobuo TSUNODA, Shun-ichi NAGATA, Rikio KIRISAWA, Kentaro ...
    Article ID: 2017-099
    [Advance publication] Released: November 11, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Testosterone (T) concentration is a useful indicator of reproductive function in male animals. However, T concentration is not usually measured in veterinary clinics, partly due to the unavailability of reliable and rapid assays for animal samples. In this study, a rapid chemiluminescent enzyme immunoassay system (CLEIA system) that was developed for the measurement of T concentration in humans use was validated for stallion blood samples. First, serum T concentrations were measured using the CLEIA system and compared with those measured by a fluoroimmunoassay that has been validated for use in stallions. The serum T concentrations measured by the two methods were highly correlated (r = 0.9865, n = 56). Second, to validate the use of whole blood as assay samples, T concentrations in whole blood and in the serum were measured by the CLEIA system. T concentrations in both samples were highly correlated (r = 0.9665, n = 64). Finally, to evaluate the practical value of the CLEIA system in clinical settings, T concentrations were measured in three stallions with reproductive abnormalities after the administration of human chorionic gonadotropin (hCG). Two stallions with small or absent testes in the scrotum showed an increase in T production in response to hCG administration and one stallion with seminoma did not. In conclusion, the CLEIA system was found to be a rapid and reliable tool for measuring T concentrations in stallions and may improve reproductive management in clinical settings and in breeding studs.

    View full abstract
    Download PDF (621K)
  • Hiroaki OKAMURA, Takashi YAMAMURA, Yoshihiro WAKABAYASHI
    Article ID: 2017-103
    [Advance publication] Released: November 07, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    A population of neurons in the arcuate nucleus (ARC) coexpresses kisspeptin, neurokinin B (NKB), and dynorphin, and therefore they are referred to as KNDy neurons. It has been suggested that KNDy neurons participate in several brain functions, including the control of reproduction. The present study aimed to advance our understanding of the anatomy of the KNDy neural system. We first produced an antiserum against goat kisspeptin. After confirming its specificity, the antiserum was used to histochemically detect kisspeptin-positive signals. Using the colocalization of kisspeptin and NKB immunoreactivity as a marker for KNDy neurons, we mapped distributions of their cell somata and fibers in the whole brain (except the cerebellum) of ovariectomized (OVX) goats. KNDy neuronal somata were distributed throughout the ARC, and were particularly abundant in its caudal aspect. KNDy neuronal fibers projected into several areas within the septo-preoptic-hypothalamic continuum, such as the ARC, median eminence, medial preoptic nucleus, and bed nucleus of the stria terminalis. Kisspeptin immunoreactivity was not found outside of the continuum. We then addressed to the hypothesis that substance P (SP) is also involved in the KNDy neural system. Double-labeling immunohistochemistry for kisspeptin and SP revealed that KNDy neurons did not coexpress SP, but nearly all of the KNDy neuronal somata were surrounded by fibers containing SP in the OVX goats. The present results demonstrate anatomical evidence for a robust association between the KNDy and SP neural systems.

    View full abstract
    Download PDF (941K)
  • Shin-ichi KASHIWABARA, Satsuki TSURUTA, Yutaro YAMAOKA, Kanako OYAMA, ...
    Article ID: 2017-106
    [Advance publication] Released: November 03, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Mutant mice lacking a testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, exhibit spermiogenesis arrest and male infertility. However, the mechanism by which PAPOLB regulates spermiogenesis remains unclear. In this study, we examined the relationships between PAPOLB and other spermiogenesis regulators present in the chromatoid body (CB). The loss of PAPOLB had no impact either on the abundance of CB components such as PIWIL1, TDRD6, YBX2, and piRNAs, or on retrotransposon expression. In addition, localization of CB proteins and CB architecture were both normal in PAPOLB-null mice. No interactions were observed between PAPOLB and PIWIL1 or YBX2. While PIWIL1 and YBX2 were associated with translationally inactive messenger ribonucleoproteins and translating polyribosomes, PAPOLB was present almost exclusively in the mRNA-free fractions of sucrose gradients. These results suggest that PAPOLB may regulate spermiogenesis through a pathway distinct from that mediated by CB-associated factors.

    View full abstract
    Download PDF (2821K)
  • Iulian IBĂNESCU, Claus LEIDING, Heinrich BOLLWEIN
    Article ID: 2017-083
    [Advance publication] Released: October 28, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    This study aimed to identify motile sperm subpopulations in extended boar semen and to observe the presumptive seasonal variation in their distribution. Data from 4837 boar ejaculates collected over a two-year period were analyzed in terms of kinematic parameters by Computer Assisted Sperm Analysis (CASA). Individual sperm data were used to determine subgroups of motile sperm within the ejaculates using cluster analysis. Four motile sperm subpopulations (SP) were identified, with distinct movement patterns: SP1 sperm with high velocity and high linearity; SP2 sperm with high velocity but low linearity; SP3 sperm with low velocity but high linearity; and SP4 sperm with low velocity and low linearity. SP1 constituted the least overall proportion within the ejaculates (P < 0.05). Season of semen collection significantly influenced the different proportions of sperm subpopulations. Spring was characterized by similar proportions of SP1 and SP4 (NS) and higher proportions of SP3. Summer brought a decrease in both subgroups containing fast sperm (SP1 and SP2) (P < 0.05). During autumn, increases in SP2 and SP4 were recorded. Winter substantially affected the proportions of all sperm subpopulations (P < 0.05) and SP2 became the most represented subgroup, while SP1 (fast and linear) reached its highest proportion compared to other seasons. In conclusion, extended boar semen is structured in distinct motile sperm subpopulations whose proportions vary according to the season of collection. Summer and autumn seem to have a negative impact on the fast and linear subpopulation. Cluster analysis can be useful in revealing differences in semen quality that are not normally detected by classical evaluation based on mean values.

    View full abstract
    Download PDF (438K)
  • Toshiaki SUMIYOSHI, Natumi ENDO, Tomomi TANAKA, Hideo KAMOMAE
    Article ID: 2016-136
    [Advance publication] Released: October 27, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Relaxation of the intravaginal part of the uterus is obvious around 6 to 18 h before ovulation, and this is considered the optimal time for artificial insemination (AI), as demonstrated in recent studies. Estrous signs have been suggested as useful criteria for determining the optimal time for AI. Therefore, this study evaluated the usefulness of estrous signs, particularly the relaxation of the intravaginal part of the uterus, as criteria for determining the optimal time for AI. A Total of 100 lactating Holstein-Friesian cows kept in tie-stall barns were investigated. AI was carried out based on the criterion for the optimal time for AI (optimal group), and earlier (early group) and later (late group) than the optimal time for AI, determined on the basis of estrous signs. After AI, ovulation was assessed by rectal palpation and ultrasonographic observation at 6-h intervals. For 87.5% (35/40) of cows in the optimal group, AI was carried out 24–6 hours before ovulation, which was previously accepted as the optimal time for AI. AI was carried out earlier (early group) and later (late group) than optimal time for AI in 62.1% (18/29) and 71.0% (22/31) of cows, respectively. The conception rate for the optimal group was 60.0%, and this conception rate was higher than that for the early group (44.8%) and late group (32.2%), without significance. Further, the conception rate of the optimal group was significantly higher than the sum of the conception rates of the early and late groups (38.3%; 23/60) (P < 0.05). These results indicate that the criteria postulated, relaxation of the intravaginal part of the uterus and other estrous signs are useful in determining the optimal time for AI. Furthermore, these estrous signs enable the estimations of stages in the periovulatory period.

    View full abstract
    Download PDF (567K)
  • Ihsan ALI, Hai Xing LIU, Li ZHONG-SHU, Ma DONG-XUE, Lijie XU, Syed Zah ...
    Article ID: 2017-055
    [Advance publication] Released: October 27, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Endoplasmic reticulum (ER) stress, a dysfunction in protein-folding capacity, is involved in many pathological and physiological responses, including embryonic development. This study aims to determine the developmental competence, apoptosis, and stress-induced gene expression in mouse preimplantation embryos grown in an in vitro culture medium supplemented with different concentrations of the ER stress inducer tunicamycin (TM) and the antioxidant glutathione (GSH). Treatment of zygotes with 0.5 µg/ml TM significantly decreased (P < 0.05) the rate of blastocyst formation, whereas 1 mM GSH supplementation improved the developmental rate of blastocysts. Furthermore, TM treatment significantly increased (P < 0.05) the apoptotic index and reduced the total number of cells, whereas GSH significantly increased the total number of cells and decreased the apoptotic index. The expression levels of ER chaperones, including immunoglobulin-binding protein, activating transcription factor 6, double-stranded activated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein were significantly increased (P < 0.05) by TM, but significantly decreased (P < 0.05) by GSH treatment. A similar pattern was observed in the case of the pro-apoptotic gene, B cell lymphoma-associated X protein. The expression level of the anti-apoptotic gene B cell lymphoma 2, was decreased by TM, but significantly increased after co-treatment with GSH. In conclusion, GSH improves the developmental potential of mouse embryos and significantly alleviates ER stress.

    View full abstract
    Download PDF (1124K)
  • Alexander A. TOKMAKOV, Ken-Ichi SATO, Vasily E. STEFANOV
    Article ID: 2017-100
    [Advance publication] Released: October 27, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Spawned unfertilized eggs have been found to die by apoptosis in several species with external fertilization. However, there is no necessity for the externally laid eggs to degrade via this process, as apoptosis evolved as a mechanism to reduce the damaging effects of individual cell death on the whole organism. The recent observation of egg degradation in the genital tracts of some oviparous species provides a clue as to the physiological relevance of egg apoptosis in these animals. We hypothesize that egg apoptosis accompanies ovulation in species with external fertilization as a normal process to eliminate mature eggs retained in the genital tract after ovulation. Furthermore, apoptosis universally develops in ovulated eggs after spontaneous activation in the absence of fertilization. This paper provides an overview of egg apoptosis in several oviparous biological species, including frog, fish, sea urchin, and starfish.

    View full abstract
    Download PDF (528K)
  • Hiromi KUSAKA, Hiroshi MIURA, Motohiro KIKUCHI, Minoru SAKAGUCHI
    Article ID: 2017-092
    [Advance publication] Released: October 26, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    After parturition, the ovary ipsilateral to the side of previous pregnancy exhibits lower functional activity than that exhibited by the contralateral ovary. The local inhibitory effects of the corpus luteum of the previous pregnancy, and/or the presence of a previous gravid uterine horn, may induce the ipsilateral suppression of folliculogenesis. We examined the influence of the side of previous pregnancy on ovulation and folliculogenesis, until completion of the third postpartum ovulation. The ovaries of 30 Holstein cows were scanned by ultrasonography, through the three postpartum ovulation sequences. No significant differences in the development of growing follicles, 5–8 mm in diameter, were detected between ipsilateral and contralateral ovaries. However, the total number of dominant follicles emerging ipsilaterally before the second postpartum ovulation were less than those emerging contralaterally (25 vs. 75%), and both the first and second ovulation occurred less frequently on the ipsilateral versus contralateral side (23 vs. 77% and 27 vs. 73%, respectively). Sequential observation in this study clearly indicated that the influence of the side of previous pregnancy persisted until the second postpartum ovulation, and this affected postpartum dominant follicle selection and ovulation, but not the development of growing follicles.

    View full abstract
    Download PDF (671K)
  • Toshimichi ISHII, Kensuke TOMITA, Hideo SAKAKIBARA, Satoshi OHKURA
    Article ID: 2017-095
    [Advance publication] Released: October 20, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    This study was aimed at evaluating the effects of multi-layered cumulus cells (MCCs) during vitrification and in vitro fertilization (IVF) of mature bovine oocytes and embryogenesis after IVF. The rates of cleavage and blastocyst formation were higher in vitrified and fertilized oocytes with MCCs than in denuded oocytes (P < 0.05), but were comparable to the rates in fresh oocytes with MCCs or without (denuded). When the MCC-enclosed oocytes were denuded before IVF, blastocyst formation rate reduced compared with that in vitrified oocytes with MCCs (P < 0.05). This suggested that the MCCs surrounding the mature bovine oocytes play important roles during cryopreservation: protecting them against freezing and promoting their survival and development post IVF, thereby increasing the success rates of IVF and embryonic development. Herein, we showed for the first time that calves could be produced using only 14–19 vitrified mature oocytes with MCCs from the ovaries of individual cows post slaughter.

    View full abstract
    Download PDF (475K)
  • Yutaka HASHIYADA
    Article ID: 2017-096
    [Advance publication] Released: October 15, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Production of sires with high breeding potential is indispensable for prompt and reliable breeding using their semen in the cattle industry. Currently, in Japan, we aim to further the production of Japanese black sires via a new breeding system that uses genetically homologous monozygotic twins so that better growth performance and carcass traits can be translated to the increased production of beef with higher economic value. Several studies have reported that monozygotic twins are produced by embryo bisection. On the other hand, with the evolution and stabilization of in vitro fertilization technology, it has become possible to produce multiple monozygotic twin calves from blastomeres separated from a cleavage-stage embryo. This review attempts to clarify breeding practices through revalidation of the factors that affect the production efficiency of monozygotic twin calves by embryo bisection. Furthermore, the establishment of a system for monozygotic twin embryo production via the simplified technique of blastomere separation is reviewed while showing data from our previously performed studies.

    View full abstract
    Download PDF (709K)
  • Minami W OKUYAMA, Tomochika SUGIURA, Masaharu MORIYOSHI, Kazuto YAMASH ...
    Article ID: 2017-063
    [Advance publication] Released: October 14, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    For examining pig ovaries, which have complex structures, laparoscopy is a useful technique, but requires general anesthesia; therefore, it cannot be performed repeatedly within a short period of time. We report a transvaginal endoscopy-based technique for conducting ovarian examinations without general anesthesia. Sows were sedated in pig stalls. Using a colonoscope, the vaginal wall was punctured with a trocar. To avoid the trocar being caught in the broad ligament of the uterus or the connective tissue around the vagina, the trocar was inserted close to the external uterine os and between the 2:00 and 3:00 or the 9:00 and 10:00 positions (in a clockwise direction). Then, a urethroscope was inserted into the abdomen, and an examination was carried out after the ovaries had been moved towards the urethroscope camera via rectal palpation. This less invasive procedure may allow repeated examinations and will increase our understanding of ovarian dynamics in pigs.

    View full abstract
    Download PDF (1073K)
  • Akihiko OHTA, Yuichiro TSUNODA, Yoshihiko TAMURA, Kayoko IINO, Naoto N ...
    Article ID: 2017-091
    [Advance publication] Released: October 13, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    The gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are important hormones in vertebrate reproduction. The isolation of gonadotropins from the pituitary gland is sub-optimal, as the cross-contamination of one hormone with another is common and often results in the variation in the measured activity of LH and FSH. The production of recombinant hormones is, therefore, a viable approach to solve this problem. This study aimed to express recombinant rat, mouse, and mastomys FSH and LH in Chinese hamster ovary (CHO) cells. Their common α-subunits along with their hormone-specific β-subunits were encoded in a single mammalian expression vector. FSH from all three species was expressed, whereas expression was achieved only for the mouse LH. Immunohistochemistry for rat alpha subunit of glycoprotein hormone (αGSU) and LHβ and FSHβ subunits confirmed the production of the dimeric hormone in CHO cells. The recombinant rodent gonadotropins were confirmed to be biologically active; estradiol production was increased by recombinant FSH in granulosa cells, while recombinant LH increased testosterone production in Leydig cells.

    View full abstract
    Download PDF (2158K)
  • Takayuki YAMOCHI, Shu HASHIMOTO, Masaya YAMANAKA, Yoshiharu NAKAOKA, Y ...
    Article ID: 2017-110
    [Advance publication] Released: October 12, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    To determine the optimum culture duration for porcine growing oocytes (GOs) to attain maturation competence, we examined the meiotic competence, chromatin configuration, and fertilization ability of porcine oocytes obtained from early antral follicles and cultured for 10–16 days. The survival rate of oocytes after 10 days of culture (62.8%) was similar to that of oocytes after 12 days of culture (55%) and significantly higher than that of oocytes cultured for 14 and 16 days (52.9% and 24.3%, respectively). No significant difference was observed in the diameter of ooplasm from oocytes cultured for different durations (117.4–118.3 μm). The maturation rates of surviving oocytes after 10 and 16 days of culture (38.3% and 22.7%, respectively) were significantly lower than those of oocytes cultured for 12 and 14 days, and their in vivo counterparts (52.8%–62.4%). The number of oocytes with surrounded-nucleolus chromatin was significantly lower in the 10-day culture group (78.4%) as compared with 14-day culture and in vivo counterpart groups (93.6% and 95.1%, respectively). After in vitro maturation and intracytoplasmic sperm injection, no significant difference was observed in the rate of fertilization among oocytes cultured for 12 and 14 days, and their in vivo counterparts (40.5%–47.2%). Thus, porcine GOs required at least 12 days to acquire meiotic and fertilization competence, and the culture duration to maximize the number of mature oocytes ranged from 12 to 14 days.

    View full abstract
    Download PDF (636K)
  • Eunhye KIM, Seon-Ung HWANG, Junchul David YOON, Eui-Bae JEUNG, Eunsong ...
    Article ID: 2017-020
    [Advance publication] Released: October 06, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Compared with the in vivo environment, porcine in vitro embryo-culture systems are suboptimal, as they induce oxidative stress via the accumulation of reactive oxygen species (ROS). High ROS levels during early embryonic development cause negative effects, such as apoptosis. In this study, we examined the effects of the antioxidant carboxyethylgermanium sesquioxide (Ge-132) during in vitro culture (IVC) on embryonic development in porcine in vitro fertilization (IVF) embryos. Zygotes were treated with different concentrations of Ge-132 (0, 100, 200, and 400 μg/ml). All of the Ge-132 treatment groups displayed greater total cell numbers after IVC (98.1, 98.5, and 103.4, respectively) compared with the control group (73.9). The 200 μg/ml Ge-132 treatment group exhibited significantly increased intracellular GSH levels compared with the control group, whereas the ROS generation levels decreased in Ge-132 dose-dependent manner (P < 0.05). The mRNA expression levels of the KEAP1 gene and proapoptotic genes BAX and CASPASE3 were lower in the Ge-132 treated blastocysts compared with the control group (P < 0.05). The percentages of apoptotic and necrotic cells in the Ge-132 treated embryos on day 2 (48 h) were significantly lower than the untreated embryos (9.1% vs. 17.1% and 0% vs. 2.7%, respectively). In the day 7 blastocysts, the percentages of apoptotic cells in 200 µg/ml Ge-132 treated group were lower compared to controls (1.6% vs. 2.5%). More KEAP1 protein was found to be localized in cytoplasm of the 200 μg/ml Ge-132 treated blastocysts, whereas KEAP1 protein was predominantly nuclei in the control blastocysts. These results indicate that the developmental competence of embryos cultured under Ge-132 treatment may be associated with KEAP1 signaling cascades involved in oxidative stress and apoptosis during porcine preimplantation embryo development.

    View full abstract
    Download PDF (1251K)
  • Po-Liang CHENG, Hui-Ru WU, Cheng-Yan LI, Chih-Feng CHEN, Hsu-Chen CHEN ...
    Article ID: 2017-090
    [Advance publication] Released: September 08, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Previous studies have shown that grafted neonatal chicken testicular tissue can develop and produce functional sperm; however, it was unclear whether regenerative processes or proportional growth caused the re-appearance of spermatogenic tissue. We dissociated testicular tissues, performed subcutaneous auto-transplantation of the re-aggregated cells to castrated cockerels, and monitored the post-surgery development of these transplanted aggregates. We found that these transplanted cell aggregates experienced compensatory growth in the form of a 300-fold increase in size, rather than the 30-fold increase observed in normal testis development. Further, these dissociated testicular cell aggregates restored seminiferous tubule structure and were able to produce testosterone and motile sperm. Therefore, we concluded that the dissociated testicular cells from 11-week-old cockerels retained a strong regenerative potential, as they exhibited compensatory growth, restored destroyed structure, and sustained spermatogenesis.

    View full abstract
    Download PDF (5616K)
  • Jeong Hyo LEE, Jeong-Woong PARK, Si Won KIM, Joonghoon PARK, Tae Sub P ...
    Article ID: 2017-067
    [Advance publication] Released: September 01, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    In mammals, germ cells originate outside of the developing gonads and follow a unique migration pattern through the embryonic tissue toward the genital ridges. Many studies have attempted to identify critical receptors and factors involved in germ cell migration. However, relatively few reports exist on germ cell receptors and chemokines that are involved in germ cell migration in avian species. In the present study, we investigated the specific migratory function of C-X-C chemokine receptor type 4 (CXCR4) in chicken primordial germ cells (PGCs). We induced loss-of-function via a frameshift mutation in the CXCR4 gene in chicken PGCs using clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. The migratory capacity of CXCR4 knockout PGCs was significantly reduced in vivo after transplantation into recipient embryos. However, CXCR4-expressing somatic cell lines, such as chicken DT40 and DF1, failed to migrate into the developing gonads, suggesting that another key factor(s) is necessary for targeting and settlement of PGCs into the genital ridges. In conclusion, we show that CXCR4 plays a critical role in the migration of chicken germ cells.

    View full abstract
    Download PDF (887K)
  • Chao WANG, Ruiming ZHANG, Le ZHOU, Jintian HE, Qiang HUANG, Farman A S ...
    Article ID: 2017-050
    [Advance publication] Released: August 31, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway.

    View full abstract
    Download PDF (514K)
  • Ayumi HASEGAWA, Keiji MOCHIDA, Narumi OGONUKI, Michiko HIROSE, Toshiko ...
    Article ID: 2017-068
    [Advance publication] Released: August 20, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    In embryo transfer experiments in mice, pseudopregnant females as recipients are prepared by sterile mating with vasectomized males. Because only females at the proestrus stage accept males, such females are selected from a stock of animals based on the appearance of their external genital tract. Therefore, the efficiency of preparing pseudopregnant females largely depends on the size of female colonies and the skill of the operators who select females for sterile mating. In this study, we examined whether the efficiency of preparing pseudopregnant females could be improved by applying an estrous cycle synchronization method by progesterone (P4) pretreatment, which significantly enhances the superovulation outcome in mice. We confirmed that after two daily injections of P4 (designated Days 1 and 2) in randomly selected females, the estrous cycles of most females (about 85%) were synchronized at metestrus on Day 3. When P4-treated females were paired with vasectomized males for 4 days (Days 4–8), a vaginal plug was found in 63% (20/32) of the females on Day 7. After the transfer of vitrified-warmed embryos into their oviducts, 52% (73/140) of the embryos successfully developed into offspring, the rate being comparable to that of the conventional embryo transfer procedure. Similarly, 77% (24/31) of females became pregnant by fertile mating with intact males for 3 days, which allowed the scheduled preparation of foster mothers. Thus, our estrous cycle synchronization method may omit the conventional experience-based process of visually observing the vagina to choose females for embryo transfer. Furthermore, it is expected that the size of female stocks for recipients can be reduced to less than 20%, which could be a great advantage for facilities/laboratories undertaking mouse-assisted reproductive technology.

    View full abstract
    Download PDF (577K)
  • Masumi HIRABAYASHI, Hiromasa HARA, Teppei GOTO, Akiko TAKIZAWA, Melind ...
    Article ID: 2017-074
    [Advance publication] Released: August 19, 2017
    JOURNALS FREE ACCESS ADVANCE PUBLICATION

    The present study was conducted to establish haploid embryonic stem (ES) cell lines using fluorescent marker-carrying rats. In the first series, 7 ES cell lines were established from 26 androgenetic haploid blastocysts. However, only 1 ES cell line (ahES-2) was found to contain haploid cells (1n = 20 + X) by fluorescence-activated cell sorting (FACS) and karyotypic analyses. No chimeras were detected among the 10 fetuses and 41 offspring derived from blastocyst injection with the FACS-purified haploid cells. In the second series, 2 ES cell lines containing haploid cells (13% in phES-1 and 1% in phES-2) were established from 2 parthenogenetic haploid blastocysts. Only the phES-2 cell population was purified by repeated FACS to obtain 33% haploid cells. Following blastocyst injection with the FACS-purified haploid cells, no chimera was observed among the 11 fetuses; however, 1 chimeric male was found among the 47 offspring. Although haploid rat ES cell lines can be established from both blastocyst sources, FACS purification may be necessary for maintenance and chimera production.

    View full abstract
    Download PDF (832K)
  • Charlie HUVENEERS, Nicholas M. OTWAY, Megan T. STORRIE, Robert G. HARC ...
    Article ID: 20144
    [Advance publication] Released: February 23, 2009
    JOURNALS FREE ACCESS ADVANCE PUBLICATION
    This article was retracted. See the Notification.
    View full abstract
    Download PDF (661K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top