Transcutaneous energy transmission systems (TETS) that supply power to ventricular assist devices have been developed. The air-core transcutaneous transformer is coated with insulating materials, however, the high-frequency leakage current (HFLC) flows because capacitive coupling may be electrically connected between the air-core transcutaneous transformer and the human body. We proposed that high-frequency isolation transformer as a way to suppress HFLC. In this study, attenuation rate of HFLC was measured according to the change of the number of turns of the high-frequency isolation transformer (HFT). As a result, HFLC was 4.2-6.9 mA when the number of turns HFT was 6 turns. TETS which uses 6 turns of HFT satisfies the restriction value of JIS T 0601-1. However, in the 3 turns HFLC was increased to 13 mA and the temperature rise of the HFT was 20 degrees because of the core loss due to high magnetic flux density. It was confirmed that our HFT is compact, lightweight, low heat generation, and is suitable for TETS for ventricular assist device.
View full abstract