Remarkable progress has been made in the research field of plasma heating and current drive during the past 10 years. Based on an improved understanding of the mechanisms of plasma heating and current drive, various interesting heating and current drive scenarios have been proposed, and many of them have been examined in experiments. A prominent trend is that the established schemes of plasma heating and current drive are now being used as actuators to control the plasma: in order to improve MHD stability, to attain regimes of higher energy confinement time, and to control impurity accumulation. This shift in application, along with the general success of plasma heating and current drive, were made possible by the distinguished progress in RF technology. Chapter 1 of this article reviews the general progress made in the physics of plasma heating and current drive and attempts to give a concept identification of ”controlling the plasma by radio frequency waves”. Chapters 2, 3 and 4, provide comprehensive reviews in the frequency ranges, ECH, LH, and ICRF, giving lights on more specific problems. Chapter 5 addresses the applications of RF heating and current drive to ITER, where readers will find a list of attainments that have survived through critical qualifications.
View full abstract