In this section we list up the stable behavior of the augmentation quotients for all
p-groups of order
p4,
p an odd prime.
1)
G=(
Zp)
4(Passi[6, Theorem 4.7])
n0=3
p-2, π=1,
Qn0(
G)=(
Zp)
p3+p2+p+1.
2)
G=(
Zp)
2×
Zp2 (Horibe and Tahara [3, Proposition 4.5])
n0=3
p-2, π=1,
Qn0(
G)=(
Zp)
2p2+p-1⊕
Zp2.
3)
G=(
Zp2)
2 (Proposition 4.5)
n0=
p2+
p-1, π=1,
Qn0(
G)=(
Zp)
p2-1⊕(
Zp2)
p+1.
4)
G=
Zp×
Zp3 (Tahara and Yamada [11, Proposition 5.6])
n0=3
p-2, π=1,
Qn0(
G)=(
Zp)
3p-2⊕
Zp3.
5)
G=
Zp4 (Passi [6, Theorem 3.1])
n0=1, π=1,
Qn0(
G)=
Zp4.
6)
G=
Zp׋
x,
y,
z|
xp=
yp=
zp=[
z,
x]=[
z,
y]=1, [
y,
x]=
z›
(Horibe and Tahara [3, Proposition 3.1])
n0=3
p-2, π=2,
Qn0+i(
G)=(
Zp)
(1/2)(p+1)(p2+p+1)+i,
i=0, 1.
7)
G=‹
x,
y,
z,
w||
xp=
yp=
zp=
wp=[
w,
x]=[
w,
y]=[
w,
z]=1 [
z,
y]=1, [
y,
x]=
z, [
z,
x]=
w›
(G. Losey and N. Losey [4, Proposition 3.2])
n0=4
p-3, π=6,
Qn0+i(
G)=(
Zp)
sn0+i(G) Case 1.
p≡1 mod 3,
sn0+i(
G)=
K(
i=0, 4),
K+1(
i=1, 2, 3),
K+2(
i=5),
where
K=1+
p+_??_(
p2-1)+_??_(
p3-1),
Case 2.
p≡2 mod 3,
sn0+i(
G)=
L(
i=0),
L+2(
i=1, 5),
L+1(
i=2, 3, 4),
where
L=1+
p+_??_(
p2-1)+_??_(
p3-2).
8)
G=‹
x,
y,
z|
xp=
yp=
zp2=[
y,
x]=[
zp,
x]=1, [
z,
x]=
y, [
z,
y]=
zp›
(Horibe and Tahara [3, Proposition 5.3])
n0=4
p-3, π=2,
Qn0+i(
G)=(
Zp)
(1/2)(3p2+2p+1)+i,
i=0, 1.
View full abstract