鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
等辺山形鋼のロール矯正プロセスに対する3次元有限要素解析
早川 邦夫
著者情報
ジャーナル オープンアクセス

2009 年 95 巻 11 号 p. 773-779

詳細
抄録

Three-dimensional finite element analysis of a roller straightening of an equal leg angle was performed in the present paper in order to validate the usefulness of the employment of FEM to the determination of the intermeshes of rolls in actual roller straightening process. SS400 was employed for the material of equal leg angle. For the plastic constitutive equation of the material, Armstrong–Frederick type combined hardening law was used. Initial shape of the equal leg angle had a uniform curvature lengthwise. A dynamic explicit procedure was used to realize the feeding of the equal leg angle into the intermeshed rolls by rotating the bottom rolls and to accomplish the calculation under the condition of frequent contact-separation between equal leg angle–roll interface. A static implicit procedure was subsequently used to obtain the final shape of equal leg angle by using the last state of equal leg angle by dynamic explicit process. Elastic spring elements were introduced in order to support upper rolls to realize the elastic deflection of the roller straightener apparatus. The spring constant was determined so that straightness of equal leg angle after straightening can be less than 0.1% of its length. The distribution of bending stress, bending plastic strain during and after straightening were observed and discussed. Finally, the effect of intermesh of final roll on the straightness of equal leg angle was calculated.

著者関連情報
© 2009 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top