IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Parallel and Distributed Computing and Networking
Evaluation of GPU-Based Empirical Mode Decomposition for Off-Line Analysis
Pulung WASKITOShinobu MIWAYasue MITSUKURAHironori NAKAJO
Author information
JOURNAL FREE ACCESS

2011 Volume E94.D Issue 12 Pages 2328-2337

Details
Abstract
In off-line analysis, the demand for high precision signal processing has introduced a new method called Empirical Mode Decomposition (EMD), which is used for analyzing a complex set of data. Unfortunately, EMD is highly compute-intensive. In this paper, we show parallel implementation of Empirical Mode Decomposition on a GPU. We propose the use of “partial+total” switching method to increase performance while keeping the precision. We also focused on reducing the computation complexity in the above method from O(N) on a single CPU to O(N/P log (N)) on a GPU. Evaluation results show our single GPU implementation using Tesla C2050 (Fermi architecture) achieves a 29.9x speedup partially, and a 11.8x speedup totally when compared to a single Intel dual core CPU.
Content from these authors
© 2011 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top