IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Foundations of Computer Science — Mathematical Foundations and Applications of Computer Science and Algorithms —
An Improved Sufficient Condition for Reconfiguration of List Edge-Colorings in a Tree
Takehiro ITOKazuto KAWAMURAXiao ZHOU
Author information
JOURNAL FREE ACCESS

2012 Volume E95.D Issue 3 Pages 737-745

Details
Abstract
We study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing only one edge color assignment at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. Ito, Kaminski and Demaine gave a sufficient condition so that any list edge-coloring of a tree can be transformed into any other. In this paper, we give a new sufficient condition which improves the known one. Our sufficient condition is best possible in some sense. The proof is constructive, and yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices via O(n2) recoloring steps. We remark that the upper bound O(n2) on the number of recoloring steps is tight, because there is an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n2) recoloring steps.
Content from these authors
© 2012 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top