Advanced Biomedical Engineering
Online ISSN : 2187-5219
ISSN-L : 2187-5219
Simultaneous Modeling of In Vivo and In Vitro Effects of Nondepolarizing Neuromuscular Blocking Drugs
Hikaru HOSHINOEiko FURUTANI
Author information
JOURNAL OPEN ACCESS
J-STAGE Data

2024 Volume 13 Pages 163-175

Details
Abstract

Nondepolarizing neuromuscular blocking drugs (NDNBs) are clinically used to produce muscle relaxation during general anesthesia. This study explored a suitable model structure to simultaneously describe in vivo and in vitro effects of three clinically used NDNBs; cisatracurium, vecuronium, and rocuronium. In particular, we examined how to reconcile an apparent discrepancy that rocuronium is less potent at inducing muscle relaxation in vivo than predicted from in vitro experiments. We developed a framework for estimating model parameters from published in vivo and in vitro data, and thereby compared the descriptive abilities of several candidate models. Modeling of the dynamic effect of activation of acetylcholine receptors (AChRs) was essential for describing in vivo experimental results, and a cyclic gating scheme of AChRs appeared to be appropriate. Furthermore, the above discrepancy in experimental results can be explained as follows: the in vivo concentration of acetylcholine is relatively low and can activate only a part of AChRs, whereas more than 95% of AChRs are activated during in vitro experiments. Furthermore, rocuronium has smaller site-selectivity than cisatracurium and vecuronium.

Content from these authors
© 2024 Japanese Society for Medical and Biological Engineering

Copyright: ©2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Previous article Next article
feedback
Top