構造工学論文集B
Online ISSN : 2436-6285
Print ISSN : 0910-8033
機械学習による支持条件が異なる単層円筒ラチスシェルの等価静的地震荷重の作成手法
栄井 志月瀧内 雄二中澤 祥二
著者情報
ジャーナル フリー

2025 年 71B 巻 p. 174-184

詳細
抄録

This paper presents a method for predicting dominant vibration modes using neural networks to calculate the static seismic loads of single-layer cylindrical reticulated shells with various support conditions. In order to represent the structural features of these shells, such as support conditions and aspect ratios, in neural networks, this study introduces a method of expressing the displacement distribution in a fixed-length three-dimensional array, similar to image data. The three-dimensional array is fed into a neural network with convolutional layers and is used to predict the dominant vibration modes. Machine learning was applied for training, validation, and testing based on the vibration analysis results from 37,293 shells. The results demonstrate that the proposed method can accurately predict the dominant vibration modes.

著者関連情報
© 2025 日本建築学会
前の記事 次の記事
feedback
Top