Abstract
Groups of dioxadicarboxylic diamides, which were developed as potential ionophores for inorganic cations, were found to act as ionophores for a stimulant, phentermine. Especially, N,N-dioctadecyl-N′,N′-dipropyl-3,6-dioxaoctanediamide, which was originally developed as a lead ionophore and is commercially available from Fluka as lead ionophore I, was suitable for making a phentermine-selective electrode. The electrode constructed using this ionophore and bis(2-ethylhexyl) sebacate as a solvent mediator in a poly(vinyl chloride) membrane matrix discriminated between phentermine and analogous compounds more effectively than an electrode based on dibenzo-18-crown-6, a representative ionophore for organic ammonium ions. Moreover, the present electrode showed remarkably little interference by inorganic cations, such as Na+ and K+, as well as lipophilic quaternary ammonium ions including (C2H5)4N+ and (C3H7)4N+. The electrode exhibited a near-Nernstian response to phentermine in the concentration range of 2 × 10-6 to 1 × 10-2 M with a slope of 54.8 mV per concentration decade in 0.1 M MgCl2. The lower limit of detection was 7 × 10-7 M. This electrode was applied to determine phentermine in a cationic-exchange resin complex of this stimulant, which is the general dosage form in medical use.