Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Adsorption Behavior of Cytochrome c, Myoglobin and Hemoglobin in a Quartz Surface Probed Using Slab Optical Waveguide (SOWG) Spectroscopy
Jose H. SANTOSNaoki MATSUDAZhi-mei QITakamitsu YOSHIDAAkiko TAKATSUKenji KATO
Author information
JOURNAL FREE ACCESS

2003 Volume 19 Issue 2 Pages 199-204

Details
Abstract

Slab optical waveguide (SOWG) spectroscopy was used to observe the adsorption behavior of three important heme proteins, namely cytochrome c, myoglobin and hemoglobin, in a quartz surface. Using prism-coupled polychromatic visible light propagated into a quartz waveguide by internal total reflection, the real-time monitoring of evanescent wave absorption revealed a strong dependence of the protein-surface interaction on the protein concentration, the solution pH and the ionic strength. For the three proteins studied, the absorbance-bulk concentration ratio was higher at low bulk concentrations, and decreased at higher concentrations. For cytochrome c and myoglobin, the absorbance approached a limiting value, but buffered hemoglobin surprisingly did not show any indication of forming a signal plateau. Moreover, the slow introduction of protein into the solution lessened the total adsorbed amount per unit area. These observations suggested a possible conformational transition of the protein molecules at the quartz surface after adsorption. For a bulkier protein, hemoglobin, adsorption onto the quartz surface was enhanced in the presence of a phosphate buffer, while the opposite effect was observed for the smaller cytochrome c and myoglobin molecules. The results of pH studies concurred with the electrostatic interactions predicted from the isoelectric data of proteins and the quartz surface.

Content from these authors
© 2003 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top