Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Multivariate Analysis for 1H-NMR Spectra of Two Hundred Kinds of Tea in the World
Masako FUJIWARAItiro ANDOKazunori ARIFUKU
Author information
JOURNALS FREE ACCESS

2006 Volume 22 Issue 10 Pages 1307-1314

Details
Abstract

NMR measurements coupled with pattern-recognition analysis offer a powerful mixture-analysis tool for latent-feature extraction and sample classification. As fundamental applications of this analysis for mixtures, the 1H spectra of 176 kinds of green, black, oolong and other tea infusions were acquired by a 500 MHz NMR spectrometer. Each spectrum pattern was analyzed by a multivariate statistical pattern-recognition method where Principal Component Analysis (PCA) was used in combination with Soft Independent Modeling of Class Analogy (SIMCA). SIMCA effectively selected variables that contribute to tea categorization. The final PCA resulted in clear classification reflecting the fermentation and processing of each tea, and revealed marker variables that include catechin and theanine peaks.

Information related to the author
© 2006 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top