Abstract
A novel method was developed for the preparation of highly efficient anion- and cation-exchange microHPLC columns using an on-column polymerization of methacrylates having amine or sulfonic acid functional groups onto monolithic silica capillary columns modified with 3-methacryloxypropyltriethoxysilane as the anchor groups. The chromatographic evaluation of the columns using nucleic acids, nucleotides, and inorganic anions as samples showed the characteristics of the ion-exchange-type stationary phases. These columns exhibited higher separation efficiency when compared with the conventional particle-packed columns. A capillary column for the simultaneous anion- and cation-exchange separation could be prepared by a step-by-step functionalization. The advantages of this column preparation will include: (1) no need of column packing; (2) no need of the preparation of silane reagents possessing anion- and cation-exchange functionalities; (3) the amount of immobilized polymer could be controlled by changing polymerization conditions. These columns should be suitable for the separation of biologically active compounds by the microHPLC modes.