Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Electrochemical Behavior of Levodopa at Multi-Wall Carbon Nanotubes-Quantum Dots Modified Glassy Carbon Electrodes
Yi TUQiao XUQiu-Ju ZOUZhao-Hui YINYuan-Yuan SUNYuan-Di ZHAO
Author information
JOURNAL FREE ACCESS

2007 Volume 23 Issue 11 Pages 1321-1324

Details
Abstract
A multi-wall carbon nanotubes (MWNTs)-quantum dots (QDs) composite-modified glassy carbon electrode (GCE) was prepared. The complex was characterized by transmission electron microscopy (TEM). The electrochemical behavior of levodopa at MWNTs and QDs-modified GCEs (MWNTs-QDs/GCE) was studied by cyclic voltammetry (CV) and chronocoulometry (CC). It was found that its electrochemical behavior was a two-charge-two-proton process. The modified electrode had high electrocatalytic activity for levodopa with a standard heterogeneous rate constant of 0.595 cm s-1, which was greatly increased compared with the values for bare GCE and individual MWNTs modified GCE. The better electrocatalytic activity for levodopa at MWNTs-QDs/GCE may due to a synergistic effect between MWNTs and QDs. This result provides a novel way to promote research on biomicromolecules at nano-dimensions.
Content from these authors
© 2007 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top