Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
Amperometric Biosensor for Hydrogen Peroxide Based on Direct Electrocatalysis by Hemoglobin Immobilized on Gold Nanoparticles/1,6-Diaminohexane Modified Glassy Carbon Electrode
Mingyu TANGShihong CHENRuo YUANYaqin CHAIFengxian GAOYi XIE
Author information
JOURNAL FREE ACCESS

2008 Volume 24 Issue 4 Pages 487-491

Details
Abstract
A facile strategy of an amperometric biosensor for hydrogen peroxide based on the direct electrocatalysis of hemoglobin (Hb) immobilized on gold nanoparticles (GNPs)/1,6-diaminohexane (DAH) modified glassy carbon electrode (GCE) has been described. A uniform monolayer film of DAH was initially covalently bound on a GCE surface by virtue of the electrooxidation of one amino group of DAH, and another amino group was modified with GNPs and Hb, successively. The fabrication process was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The proposed biosensor exhibited an effective and fast catalytic response to the reduction of H2O2 with good reproducibility and stability. A linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1.5 × 10-6 to 2.1 × 10-3 M with a correlation coefficient of 0.998 (n = 24). The detection limit (S/N = 3) was 8.8 × 10-7 M.
Content from these authors
© 2008 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top