Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
A Pivot-Hinge-Style DNA Immobilization Method with Adaptable Surface Concentration Based on Oligodeoxynucleotide-Phosphorothioate Chemisorption on Gold Surfaces
Hisao YOSHINAGAKoji NAKANONobuaki SOHRyoichi ISHIMATSUToshihiko IMATO
Author information
JOURNAL FREE ACCESS
Supplementary material

2012 Volume 28 Issue 11 Pages 1059-1064

Details
Abstract

The chemisorption of oligodeoxynucleotide phosphorothioate (s-oligo) is reported. A series of s-oligo DNAs was designed for use as capture probe DNA molecules. The s-oligo DNAs consist of the K-ras gene (5′-GGA GCT GGT GGC-3′) and a dodecamer deoxyriboadenosine, both of which lie on either side of an s-oligo DNA sequence. By primarily focusing on the capture probe DNA having five-successive s-oligo sequences, e37, the immobilization chemistry of e37 was examined; atomic force microscopy achieved the direct visualization of individual molecules on Au(111) substrates, while a series of surface analyses, including IR, ellipsometry, and microgravimetry, showed that the s-oligo functional groups played a pivotal role in the surface-adlayer through the gold-thiol interaction. Interestingly, the amount of immobilization showed a definite relationship with the number of s-oligo linkages introduced, which should be important to regulate the concentration of the capture probe DNA molecules on the surface. Some preliminary studies using ferrocene-modified complementary sequences indicated that electrochemical labeling and readouts were possible.

Content from these authors
© 2012 by The Japan Society for Analytical Chemistry
Previous article Next article
feedback
Top