Abstract
The electrodeposition of gold nanostructures increases the surface area of a biosensor, which brings an enhancement of the sensitivity by increasing the amount of analyte binding to the surface. To evaluate the relationship among the surface structure, the area and the analyte binding, we quantitatively analyzed them for quartz crystal microbalance (QCM) sensing by scanning electron microscopy and cyclic voltammetry measurements. The results indicate a several-times increase of analyte bindings, and also the limitation of the sensing performance.